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ABSTRACT 

A quarkonium potential is constructed with the help of masses 
and leptonic widths of the T(lS-45) levels using the inverse scat- 
tering formalism. This potential agrees at all interquark separations 
beyond 0.061 with one constructed earlier from J, and $J', providing 
further evidence for flavor independence of the QQ interaction. 
Comparison with other a priori potentials suggests that tests for a 
short-range Coulomb interactlon (as predicted by QCO) will have to 
rely primarily on more precise values for r(T + e+e-1, on measure- 
ment of the 2S-2P spacing (predicted to be about 120 MeV for a short- 
range Coulomb-like interaction or in the inverse scattering formalism 
but about 150 MeV for an effective power-law potential), and on the 
discovery of heavier quarks. 

INTRODUCTION 

The nonrelativistic quark model, with Schradinger dynamics, has 
some promise of describing the T family of resonances (reviewed in 
Ref. 1). A natural question is the form of the interquark inter- 
action. The predictions of specific potentials with various degre s 
of theoretical motivation may be compared with spectroscopic data. E-4 
Scaling methods can show if a potential behaves like a power law 
V(r) = A + Br" in the region of interest.5 The potential can be 
constructed directly from masses and 1 ptonic widths with the help 
of the inverse scattering formalism. 6-5 A further step in this 
direction is described here. 

We shall use the most recent parameters' of T(lS-4s) to con- 
struct a quarkonium potential which turns out remarkably similar to 
one constructed earlier from charmonium data.6 Evidence for flavor 
independence of the quark-antiquark interaction is thereby extended 
beyond the range investigated earlier.7 The oredictions of skis po- 
tential are compared with those of other a priori potentials. It 
is found that most properties of the chariiionium and T systems are 
sufficiently similar that tests for a QCD-motivated short-distance 
Coulomb singularity must be selected with some care. The masses of 
the lowest P-wave b6 states, the leptonic width of the 1s T level, 
and properties of quarkonia heavier than the T family provide means 
for distinction among various potentials. 
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METHODS AND RESULTS 

A one-dimensional potential with a set of levels Ei may be con- 
structed as follows. Choose an "ionization point' F. not far above 
the last level. If E, is chosen too high, a potential will be con- 
structed with a large "energy gap": it will consist of multiple 
buckets just as a solid (with energy gaps) also has multiple sites 
of attraction. Examples of this behavior have been demonstrated in 
some detail.g Let ',J denote the reduced mass, and define 

,yi = [2~ (Eo-Ei)]1'2 (1) 

Then there is a unique symmetric: 
x), a~wmg;;;;i~f at x = f e, 

reflectionless potential V(E,, I,&;, 
with just the indicated bound states. 

1s required to be reflectionless to avoid the n 
6 ?gd for phase-shift information in the inverse scattering formalism. 1 

(We don't have quark-antiquark phase shifts.) Moreover the inverse 
problem for reflectionless potentials is an algebraic one, while for 
any other situation it involves the solution of an integral equation. 

The pote,ntial is taken to be symmetric with an eye to the three- 
dimensional S-wave problem. For 2. = 0, the Schr?idinger equation 

[ - '& + V(r)] "i(q) = E ?(;) 

becomes 

(2) 

- + V(r)] [r Y(r)] = E[r Y(r)], (3) 

a one-dimensional Schrodinger equation for r Y(r). Note that r?(r) 
vanishes at r=O. Hence it can be viewed as an odd-parity eigen- 
function :> 
V(-r) = V(r ? 

(r) = r"p(r) (n=1,2,...) in a symmetric potential 
Here n- labels the number of nodes between r=O and 

r= = . The corresponding quarkonium masses may be identified with 
the odd-parity energy levels: M(nS) = Ezn(n=l,2,...). 

Let us solve the problem of N quarkonium levels. This leaves 
us with a collection of N unphysical levels El, E3, . . . . E2N-1 and 
their corresponding even-parity wave functions 'Ql, :>3,..., 
v2N-1. In the absence of information about El, E3, . . . . we can 
specify instead the set of N values 

2 2-l (16 c( e 
Q 

) (M(nS))2T(nS -e+e-) 

(n=l,...,N), (4) 

where the last equality is from Ref. 11. These are related to the 
iEi 1 by simple combinatorial identities.* For example, when N=l, 
we have 



which may be used to solve for Kl. 
The quarkonium information we use1 is summarized in Table 1. 

Table 1. Properties of 3S1 quarkonium levels. 

CC level T ee, keV b6 level r 
ee 

T,(9.46) I', = 1.0 - 1.3 keV 

.5(3.095) 4.8 !: 0.6 T2(10.02) (0.45 * 0.07) T, 

T3t10.35) (0.32 i 0.06) 7, 

d3.684) 2.1 + 0.3 T4(10.57) (0.25 f 0.05) 7, 

The '$ and 14' information were used in Ref. 6 to construct a poten- 
tial which gave the correct value of the ccspin-averaged P wave 
mass x = 3.52 GeV, the correct T - T' spacing (0.56 GeV), and 
the correct T, T' leptonic widths. This was achieved with the 
choice EO = 3.8 GeV, mc = 1.1 GeV. The potential is shown as the 
solid line in F'g. 1. 

Previously + we used T, T' data to construct a potential which 
agreed with the solid curve in Fig. 1 out to the classical turning 
point of the T', but leveled off at 10.1 GeV for larger r. With 
four T levels it is now possible to extend the comparison to larger 
interquark separations. The results are the dashed and dotted 
curves in Fig. 1. 
excellent. 

The agreement with the charmonjum potential is 
At very small distances (r < 0.3 GeV- - 0.06 fm) there 

is some sensitivity to the exact value of I'(T + e+e-). We expect 
that if the potential really has a short-distance Coulomb singu- 
larity its reconstruction using T levels will be deeper than that 
based on the ii, levels, since the heavier quarks in the T can 
probe shorter distances. 

A check has been performed on the T potentials to see if they 
can provide the correct charmonium level spacings. The result of 
solving the SchrEdinger equation is $I'-$ = (576,574) MeV, 
'b' - x = (154,1~5'2) MeV for T(T + e+e-) = (1,1.25)keV. 

The Schrbdinger equation also can be solved for other bE 
(P-wave and D-wave) levels. The results are shown as the solid 
lines in Fig. 2. 
potential3 

Also shown are the predi 
8 

tions of a logarithmic 
and of a QCD-inspired potential whose form in momentum 

space is 

V(d2) = - & (;f2) F , 
11- $ nf as-‘(:2) = 4rr an!,+2 ) , 

A2 

(7) 

(8) 

where a fit to charmonium gave n = 398 MeV. 
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Fig. 1. Quarkonium potentials constructed by the inverse scattering 
method. Solid curve based on $, $' with EO = 3.8 GeV, mc = 1.1 
GeV. Dashed curve (r(T * efe-) = 1 keV) and dotted curve 
(r(T -+ e+e- ) = 1.25 keV) based on E 
"lb = 4.5 GeV/c2. 

Tl, . . . . T4 with - 10.6 GeV, 
Horizontal lines denote S wave levels solid) and 9- 

2P levels (dashed) for charmonium (left) and upsilons (right). 

The differences are not great. The Richardson potential is too 
"stiff" at large distances (as it is for charmonium) but this is not 
of serious concern to us. Mare important is the excess of pre- 
dicted with respect to observed lep onic widths in the Richardson 
potential by factors of l-1/2 to 2. f 2 This would be evidence for 
important gluonic radiative corrections in the van Royen-Weisskopf 
formula (4). The expected form of these corrections if Coulomb 
binding dominates is 

r 
ee - iyl(o)t;J [ 1 - s 1, (9) 

where N.R. denotes the non-relativistic limit, but opinions differ on 
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Fig. 2. Positions of S-, P-, and D-wave b6 levels in several PO- 
tentials. Solid lines: potentials constructed via inverse scattering 
(see Fig. I). 
keV is shown. 

The average of predictions based on Te = 1.0, 1.25 
Dashed lines: potential V(r) = (0.715 8eV) kn(r/ro). 

Dotted lines: Richardson potential (Eqs. (7), (8)). Arrows indicate 
positions of observed S waveT levels. The DESY mass scale 
(T = 9.46 GeV) is used. 

the magnityje of this correction in the presence of a confining 
potential. 

The most important distinction among the predictions of Fig. 2 
is the 2S-2P spacing: 

120-130 MeV(inverse) 
2S - 2P = 150 MeV ( V -In r) 

120 MeV ( Eqs. (71, (8)) 
(10) 

These differences may be crucial in observing monochromatic photons 
in T' Even a smaller 2S-2P spacing is favored by a Coulomb 
+ linea;aentia12 In which the Coulomb strength does not decrease 
logarithmically at short distances. 

We close by stressing the role of heavier quarks in deciding 



among potentials (e.g., V - 2n r,-,$r Efs. (7), (8).) For the former, 
one expects r(nS i e+e-) - mO- 

-'I2 
n For a potential'4 not unlike 

(7), (8), the mg factor is absent but otherwise the leptonic 
widths behave very similarly. It is the overall scale of the lep- 
tonic widths (in particular r(lS -, e+e-)) that probes the deepest 
part of the quark-antiquark potential for any given quark mass. 

CON(iiSIONS 

We have constructed a quarkonium potential from four T levels 
using inverse scattering. A previous test of flavor indeoendence of 
the interaction has been extended to larger interquark separations. 
The depth of this potential at very small distances is all that de- 
pends strongly on the absolute scale of T leptonic widths; otherwise 
the agreement with the charmonium potential is remarkable. Attention 
has been drawn to the importance of 1) T(T -f e+e-), 2) M (T')-M(xb). 
and 3) leptonic widths of heavier quarkonia in distinguishing among 
various potentials. 
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